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A Unified Theory of Adsorption 
and Wetting Using the Percus 
Yevick Equation for Hard 
Spheres with Surface Adhesion 
PETER RICHMOND 
Unilever Research, Port Sunlight Laboratory, Wirral, Merseyside, L62 4XN 

(Received April 5. 1976) 

The recent analysis by Baxter of the Percus-Yevick model for an assembly of similar spherical 
particles with hard sphere repulsion plus a delta function attraction is generalised to an 
arbitrary number of components. We use the solution to study one component gas adsorp- 
tion onto a planar substrate. The resulting adsorption isotherms exhibit monolayer or multi- 
layer wetting according to the strengths of the interaction parameters. In particular. we find 
that multilayer wetting will not occur if the adsorbate/adsorbate interaction is sufficiently 
weak regardless of the strength of the adsorbate/adsorbent interaction. For weak adsorbate/ 
adsorbate interactions at low gas pressures the adsorption saturates at approximately a 
monolayer as the adsorbatdadsorbent interaction is increased. 

1 INTRODUCTION 

Ln a recent paper' we have studied physical adsorption using a very simple 
model based in part on the mean spherical model (MSM) and hard sphere 
Percus-Yevick (HSPY) approximations. The results obtained described 
qualitatively some aspects of gas adsorption at high pressures and hgh 
temperatures. However the approximations involved were not adequate to 
yield multilayer wetting. Clearly a better model which can handle the cor- 
relations induced by attractive interactions is needed. It is now known that 
for a one component system the PY approximation does predict a first order 
gas-liquid transition when attractive interactions are included. This result 
first became apparent from numerical However later an analytic 
solution to the P-Y equations was obtained for the particular case of a 
potential consisting of a hard core plus a delta function attraction.6 (We 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



252 P. RICHMOND 

refer to this as the sticky sphere Percus-Yevick (SSPY) approximation.) 
The solution for the isotherms obtained via the compressibility relation 
closely resembled those for the familiar van der Wads fluid. In view of this 
success it seems reasonable that generalising the model to incorporate ad- 
sorption may yield multilayer wetting. 

In this paper it will be shown that the SSPY model can indeed yield multi- 
layer wetting under certain conditions and that the isotherms resemble some 
of those originally labelled by Brunauer Emett and Teller.' The paper is set 
out as follows. In the next section we generalise our earlier work to incor- 
porate the SSPY approximation. Our method parallels recent work by 
Perram and Smith* who studied in detail the simplest multicomponent SSPY 
model namely a two component one with equal diameters in the limit that 
only like atoms interact attractively. Section 3 reviews those results obtained 
for the one component system which are essential for the case of adsorption. 
An expression for the adsorption isotherm is derived and studied in detail in 
Section 4. We close with a brief discussion. 

2 THE SSPY APPROXIMATION FOR MULTI-COMPONENT 
SYSTEMS 

We consider initially an assembly of spherical particles consisting of species 
a, /3, y . .. with number densities pa, pa, py . . . and hard sphere radii 
R, , R, , R,, . . . . The total correlation function ha, is related to the direct 
correlation function cab via the Ornstein-Zernike relation 

It is convenient to take the three dimensional Fourier transform of Eq. 
(1)  defined as follows: 

[f],, = f eik..f,,(r)dr. (2) 

We then obtain from Eqs. (1) and (2) 

[ I  + %][I - el = I (3) 
where I denotes the unit matrix. We now again follow Baxter9 and do a 
Wiener-Hopf type splitting using an auxilliary function q and its adjoint q 
as follows 

I - e(k) = [ I  - Q'(-k)][I - q(k)]. (4) 

Eqs. (4) and (3) now yield 

e(k)  = q(k)  + i j + ( - k )  - Q+(-k)q(k)  ( 5 )  
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and 

h(k)  - q(k) - ij(k)h(k) = f(k) 

f(k) - f(k)Q+(-k) - Q+(-k) = 0. 

(6) 

(7) 

where the function f satisfies 

We may now invert Eqs. (9, (6) and (7) in terms of one dimensional Fourier 
transform i.e., 

(8) 
1 "  

Fap(r) = - s e-ik'[f],8 dk. 

If we further constrain the function Q,,(r) such that 

G -* 

Q,,(r) = 0 if r < (R, - Rp)(2 = D,, (9) 

Qma(r) = 0 if r > (R, + Rp)(2 = Sap (10) 

and 

then we obtain 

and 

where 

U = min[S,,; S, - r]. 

It follows from Eqs. (7), (8) and (9) that 

Fag@) = 0 if r > D, 

and furthermore from Eq. (1 1) that 

C,(r) = 0 if r > S ,  

We note here that Eqs. (2) and (8) imply that 

We may now differentiate Eqs. (1 1) and (12) using Eq. (15) to obtain 

U 
- 2mcmp (r) = QLp (r) - 2 pY J Qya (t) Qip (r + t)dt 

Y Dyrr 
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Eqs. (16) and (17) constitute the required splitting of the Ornstein-Zernike 
relation. They must now be supplemented by a closure relation such as is 
provided by the Percus-Yevick or hyper netted chain approximations and 
in general it is necessary to resort to numerical methods. However if the 
attractive component of the interparticle potential is short ranged then we 
may obtain an analytic expression for Q,,(r) from Eq. (17). 

We note that virial expansions for strong short range potentials suggest 

(18) 

where the first term on the RHS of Eq. (18) arises from the hard core part of 
the potential and the second term, arising from the attractive component, is 
proportional to a dimensionless parameter, ,lea. Now if in Eq. (17) we 
restrict ourselves to the region D,, < r < S,, and D,, 4 t 4 S,, we have 
r - t < S,, and t - r < Shy. We may therefore replace h,, by - 1 to obtain 

(19) Q;,,(r) = A,r + B, D,, < r < So, 
where 

and 

B, = 271c py 12"' t Q,(t)dt. 
? Do, 

Integrating Eq. ( 1  9) now gives 

We note here that for a continuous potential function the functions cap, h, 
and Qnb are continuous. However for our model pseudo potential, the 
function QUe is discontinuous at r = Smb. 

We determine the parameters { A m b }  by introducing the P-Y closure rela- 
tion which may be expressed as follows 

+ hub(r) = [ I  + fu,(r)!pO,(r) (23) 
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THEORY OF ADSORPTION AND WETTING 255 

and C,,(r) is the interparticle potential. 
The interparticle potential chosen by Baxter for the one component 

system may be readily generalised to a multicomponent system and we 
obtain 

s,, < r 

The potentials {#,,(r)J are thus characterised by the parameters { T , ~ } .  

Now from Eqs. (18), (23) and (26) we readily obtain 

p,, (Sup 1 = -a,, ru, . (27) 
We may now obtain another expression for P,p(S,p). Thus from Eqs. (16) 
and (17) we have 

U 
2nr  P,p (r) = 2nr - Z Pv J" Q,,(t) Q i p  (r + t)dt 

v Dpa 

+ 2 n z  P, fs"' Q,(W - t) hyp(lr - tl)dt. (28) 

If r -+ S,, from below then we may substitute Eq. (18) into (28). Noting 
also that U -, D,, and that the second term on the RHS vanishes we 
have 

Day 

Now if D,, \< t 4 S,: then Sup - t \< S,, and the integral over the delta 
function yields a contribution, i.e., 

Combining Eqs. (27) and (30) yields a set of coupled quadratic equations 
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for the parameters {Aaa I. Thus 
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These equations must be solved in conjunction with Eqs. (20)-(22). 

2 BULK PROPERTIES OF THE ONE COMPONENT FLUID 

The bulk properties have been investigated by Baxter. In this section we 
present results necessary to proceed with the adsorption problem and review 
the general features of the bulk properties. From Eqs. (20)-(22) it follows 
after some algebra that for the one component system 

and 

where we have introduced the reduced density 7 = z p , S 3 , / 6 .  
Furthermore from Eq. (31) we have 

Substituting Eqs. (32)-(34) into (35) gives a quadraticequation forA = A,,/2z 

If T > T, = (2 - h ) / 6  = 0.0976 there are two real positive solutions to 
Eq. (36) throughout the density range 0 < 7 < 1. Below this value there 
exists a range of densities for which no real solutions exist so the system must 
undergo a discontinuous transition between states of different density. In 
other words, the model exhibits a first order phase transition. With critical 
“temperature” T, and associated critical density qc = ( 3 f i - -  4)/2 = 0.1213. 
Note that this density is well below the close packing density 7 = 7r/3V‘5 = 
0.74. When two real solutions for A exist it is necessary to reject thelarger 
solution since it must be continuous and take the zero density value ‘1-c 
(cf. Eq. (35)). Baxter also pointed out that a further criterion must be 
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THEORY OF ADSORPTION AND WETTING 257 

satisfied, namely that the integral J drh( 1 r 1 )be absolutely convergent. This 
implies that 

A'I(1 - 'I) = p < 1 + 27. (37) 
In figure 1 we have plotted the physical solution to Eq. (36)  

and indicated the physical sub region bounded by curves A and B. 
The thermodynamic properties may be obtained by using any one of a 

number of different relations. If we had solved exactly for the statistics 
mechanics of our particles rather than using the P-Y approximation, the 
different methods would all be equivalent. Unfortunately this is not so and 
Baxter discusses two different results for the pressure. Specifically he shows 
that the result obtained via the virial theorem exhibits unphysical features; 
whereas the result obtained via the compressibility is very similar to that of 
a van der Wads gas. In the region where A is continuous for all permissible 
values of the density Baxter obtains the following analytic expression for the 
compressibility pressure 

Below the critical point expression (39) may be continued analytically into 
the condensed phase and so give the pressure in either phase. 

4 ADSORPTION 

M:e shall now follow in the footsteps of our earlier work' and restrict our- 
selves to a system consisting of only two types of particle. Species 1 constit- 
utes the adsorbate and species 2 comprises only one particle which weshall 
later assume has an infinite radius so that it plays the role of an absorbent. As 
before we may define the adsorption excess, r, for our system as follows 

Integrating this expression by parts and using Eq. (15) gives 
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258 P. RICHMOND 

Now we recall Eq. (12) which for our system may be written B 

H12(r) = QIz(r) + P,  Q,,(t) HlZ(Ir - tOd t  (42) I' 
and note from Eqs. ( 1  5) and (18) that 

H,, (r)  = -n (S : ,  - r2)  t H,,(S;z) r < S,,. (43) 
From Eqs. (41)-(43) it now follows that 

The derivation is identical to that given in our previous work' (although we 
note here that in reference 1 Qob was defined with a minus sign) and we 
refer the reader there for further details. We may substitute for the functions 
Qop in E5q. (44) using Eqs. (20)-(22) to obtain 

r ~t - _  (45) 

Now from Eq. (31) we immediately obtain 

If we now introduce the notation Dlz  = ~ 1 z / 1 2 - r 1 2  we obtain from Eqs. (45) 
and (46) after taking the limit R, + cc, the expression 

We now see that apart from the parameter @,,, which from its definition is 
clearly a measure of the strength of the adsorbate/adsorbent potential, the 
adsorption excess has been expressed entirely in terms ofthe bulk properties 
of the adsorbate. Thus we may use expressions (32)-(34) to obtain finally 
the adsorption excess as a function of reduced density: 

where cz = @,,/S, and we recall that A = A ( 7 )  is given by EA. (38). 

features of this expression deserve immediate comment. 
Before doing detailed numerical calculations, a number of interesting 
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THEORY OF ADSORPTION AND WETTING 259 

In the limit of very low gas density q (< 1, weak adsorbate/adsorbent 
interactions (YV << 1, and weak adsorbate/adsorbate interactions d - '/T < 6 
then the second term on the RHS of Eq. (48) may be neglected since it is 
O ( q z )  and the first term reduces to give 

T(7) = 6a7/nS: + O ( q 2 )  (49) 

which is the well known Henry limiting law. 
If we relax the condition that the adsorbate/adsorbent interaction be weak 

and admit conditions such that crq >> 1 then again the second term on the 
RHS of Eq. (48) may be neglected and the first term reduces to give 

r(7) = I l n S :  - O('/p7; q 2 )  

Thus for weak adsorbate/adsorbate interactions but strong adsorbate/ 
adsorbent interactions, the adsorption isotherm exhibits a saturation region 
corresponding roughly to close packing on the adsorbent of a monolayer of 
gas molecules. 

If both adsorbate/adsorbate and adsorbate/adsorbent interactions are 
weak then Eq. (48) reduces to an equation obtained elsewhere (Eq. 42 in 
reference 1) which over the density range 0 4 9 < 1 was shown to yield 
adsorption isotherms typical of gases at high temperatures and pressures. 

By far the most significant is that depending on the values of the inter- 
action parameters (Y and T ,  the isotherm can exhibit multi-layer wetting. To 
see this we note first that the denominator of the second term can never be 
zero in the physical region (cf. Eq. (37)). However for T sufficiently small 

such that d(q) - - > 0 and (Y sufficiently large then the denominator of 

the first term in Eq. (48) can become zero. Thus the adsorption excess 
diverges which is typical of multi-layer wetting. We emphasise that to 
obtain multi-layer wetting, it is not sufficient to have strong adsorbate/ 
adsorbent interactions; the adsorbate/adsorbate interaction must also be 
strong too. This may be achieved by lowering the temperature. In Fig. 1 we 

have plotted the line d = - which delineates the non-wetting and multi- 

layer wetting regions. Now if the adsorbate/adsorbate interaction is suffi- 
ciently large for multi-layer wetting to occur and the adsorbate/adsorbent 
interaction is very large such that the denominator of the first term in Eq. (48) 
diverges for small values of the reduced density, q ,  then we may to leading 
order neglect the second term on the RHS and also replace d by its value 
at zero density (see Fig. 1) to obtain, 

(50) 

1-9 

1 - 7  
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15 

h(7) 

10 

5 

FIGURE 1 A plot of the physical component of the function A given by Q. (38) for various 
values of the interaction parameter 7.  Curve A marks the boundary between the physical and 
non-physical branches. Ail points above curve B correspond to solutions for which the radial 
distribution function for the one component system is divergent. 

Curve C separates the wetting and non-wetting regions in the sense that for a point below 
the curve multi-layer wetting may not occur no matter how large the adsorbate/adsorbent 
interaction is. 

Three different types of gas adsorption isotherms are obtained from such a 

function. Two correspond to types I 

BET classification. (The third occurs when z = 1/6 and is not covered in the 
BET classification.) However note that as 7 -+ 1, rwill always tend to )/7cS;. 
This is because the first term on the RHS of Eq. (48) ultimately tends to 
zero and the second term dominates. 

We have examined the complete expression for various values of the para- 
meters and the results are shown in the remaining figures. In Figure 2 the 
parameter ct is unity. For low densities 7 5 0.05 they are linear. For larger 
77 the isotherms level out and then decrease with increasing 7. For z = 0.13, 
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I 

FIGURE 2 The reduced adsorption excess rnS:/6 for (r = 1 given by Eq. (48). Thecurves 
for 7 5 0.0975 end at the limit of the physical repion. 

the behaviour is typical of high pressure gas adsorption. For lower tempera- 
tures and/or weaker adsorbate/adsorbate interactions, the adsorption 
excess decreases more rapidly and may become negative. This negative 
result arises from the second term on the RHS of Q. (48) which increases in 
importance as 7 -P 1. (This is illustrated graphically in Figure 3 which shows 
the contribution to the adsorption excess from the first term only in Eq. (48).) 
For values of 7 < T, = 0.0976 the adsorption excess is inly defined in the 
physical region and for a = 1 multi-layer wetting does not occur. In Figure 4 
the same isotherms are plotted for a = 2. In this case for7 > T, theisotherms 
do not become negative; the second term on the RHS of Eq. (48) although 
significant does not now dominate. For T < T, the isotherms diverge inside 
the physical region defined according to Figure 1. However in typical gas 
adsorption experiments the reduced densities are much smaller than 0.1 and 
yet multi-layer wetting still occurs. We may simulate this situation by 
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r,mS 
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oc= 1 

^c-0.105 

FIGURE 3 The component of the reduced adsorption excess for a = 1 given by the first 
term only on the FWS of E,q. (48). 

increasing a. Figure 5 shows the adsorption isotherms for Q = 30, a not 
unreasonable value (see EQ. 53). These isotherms correspond to those 
referred to earlier which occur for large values of a. 

5 DISCUSSION 

In this paper we have shown how using a model which includes molecular 
correlations in a non trivial way a theory of mono-layer and multi-layer 
wetting can be obtained according to the values of the various parameters. 
Specifically we fmd that multi-layer wetting is not obtained unless the 
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- 
n 

o<-2 
I 

185 ' 
I 
I 
I 

/ I 1 I 

0.1 0 .2  
FIGURE 4 The reduced adsorption excess rnS2,/6 for a = 2 given by l2q. (48). The curves for 
T 5 0.0975 arc dotted to indicate they ultimately diverge within the physical region defined in 
Figure 1. 

adsorbate/adsorbate interaction is sufficiently strong (i.e. T sufficiently 
small). This is irrespective of the strength of the adsorbate/adsorbent inter- 
action, a. Of course, when r is small enough, larger values of a will ensure 
that multi-layer wetting occurs at lower densities. 

In order to compare our results more directly with real systems one might 
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oc - 30 

0 .o 1 
FIGURE 5 The reduced adsorption excess T n S : / 6  for Q = 30 given by Eq. (51). Thecurves 
for T = 0.13 and T = 0.105 are dotted to indicate they diverge indicating multi-layer wetting is 
occurring. For large values of T, the isotherms exhibit saturation characteristic of BETtype I 
isotherms. 

define the parameters z and a via second virial coefficients. Thus, 

and 

However whilst such an identification might give qualitative agreement, 
this does not overcome the limitation noted above that in the limit of low 
pressure adsorption only two types of isotherm are obtained. It is likely that 
a solution which incorporates the inter-particle potential ( r )  explicitly 
will overcome this limitation and give a wider variety of isotherms depending 
on the range of the potentials. However in general no analytic solution is pos- 
sible and the solutions must be obtained numerically. 

Apart from the extension suggested above, this work may be readily 
generalised to adsorption of more than one species. Indeed the model forms 
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a firm base from which a comprehensive study of adsorption can be made. 
One can also use the models to consider the effect of adsorption on the inter- 
action of two adsorbing surfaces. The solution to this problem will comple- 
ment recent thermodynamic studies of this particular problem.'"J' These 
generalisations are currently being studied. 
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